曲线y=x^(1/3)的 拐点 是什么?
问题描述:
曲线y=x^(1/3)的 拐点 是什么?
对y求两次导 得出来是含x做分母的函数,要使y''=0,分子是常数,要如何求其拐点呢
答
拐点,二阶导等于0,一阶导在该点两侧符号不变.
曲线y=x^(1/3)的 拐点 是什么?
对y求两次导 得出来是含x做分母的函数,要使y''=0,分子是常数,要如何求其拐点呢
拐点,二阶导等于0,一阶导在该点两侧符号不变.