当a+b>0时,求证a^3+b^3大于等于a^2b+ab^2

问题描述:

当a+b>0时,求证a^3+b^3大于等于a^2b+ab^2

当a+b>0时,求证:a&sup3+b&sup3≥a&sup2b+ab&sup2.
证明:因为
a&sup3+b&sup3-(a&sup2b+ab&sup2)
=(a+b)(a&sup2-ab+b&sup2)-ab(a+b)
=(a+b)(a&sup2-2ab+b&sup2)
=(a+b)(a-b)&sup2
易知:(a-b)&sup2≥0,若a+b>0,则有:
a&sup3+b&sup3-(a&sup2b+ab&sup2)≥0
即:
a&sup3+b&sup3≥a&sup2b+ab&sup2