a、b为实数,且满足ab+a+b-1=0,a2b+ab2+6=0,则a2-b2=_.
问题描述:
a、b为实数,且满足ab+a+b-1=0,a2b+ab2+6=0,则a2-b2=______.
答
∵ab+a+b-1=0,∴a+b+ab=1∵a2b+ab2+6=0,∴(a+b)ab=-6 把a+b和ab看作是方程x2-x-6=0的两根解得:a+b=3,ab=-2 则a-b=±9+8=±17 所以a2-b2=(a+b)(a-b)=±317.当a+b=-2,ab=3 则(a-b)2=(a+b)2-4ab=-12(...