为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为y=(116)t−a(a为常数),如图所示.据图中提供的信息,回答下列问题:(Ⅰ)从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式为______;(Ⅱ)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么,药物释放开始,至少需要经过______小时后,学生才能回到教室.
问题描述:
为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为y=(
)t−a(a为常数),如图所示.据图中提供的信息,回答下列问题:1 16
(Ⅰ)从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式为______;
(Ⅱ)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么,药物释放开始,至少需要经过______小时后,学生才能回到教室.
答
知识点:本题考查函数、不等式的实际应用,以及识图和理解能力.易错点:只单纯解不等式,而忽略题意,在(II)中填写了其他错误答案.
(I)由题意和图示,当0≤t≤0.1时,可设y=kt(k为待定系数),由于点(0.1,1)在直线上,∴k=10;同理,当t>0.1时,可得1=(116)0.1−a⇒0.1−a=0⇒a=110(II)由题意可得y≤0.25=14,即得10t≤140≤t≤0.1或(...
答案解析:(1)当0≤t≤0.1时,可设y=kt,把点(0.1,1)代入直线方程求得k,得到直线方程;当t>0.1时,把点(0.1,1)代入y=(
)t−a求得a,曲线方程可得.最后综合可得答案.1 16
(2)根据题意可知y≤0.25,把(1)中求得的函数关系式,代入即可求得t的范围.
考试点:直线与圆锥曲线的综合问题.
知识点:本题考查函数、不等式的实际应用,以及识图和理解能力.易错点:只单纯解不等式,而忽略题意,在(II)中填写了其他错误答案.