已知0°<β<45°<α<135°,cos(45°−α)=3/5,sin(135°+β)=5/13,求: (1)sin(α+β)的值. (2)cos(α-β)的值.
问题描述:
已知0°<β<45°<α<135°,cos(45°−α)=
,sin(135°+β)=3 5
,求:5 13
(1)sin(α+β)的值.
(2)cos(α-β)的值.
答
解∵0°<β<45°<α<135°,
∴-90°<45°-α<0°,135°<135+β<180°
∵cos(45°−α)=
,∴sin(45°−α)=−3 5
,4 5
∵sin(135°+β)=
,∴cos(135°+β)=−5 13
12 13
∴sin(α+β)=-cos[(135°+β)-(45°-α)]
=-[cos(135°+β)cos(45°-α)+sin(135°+β)sin(45°-α)]
=−[(−
)12 13
+3 5
(−5 13
)]=4 5
56 65
cos(α-β)=-cos[(135°+β)+(45°-α)]
=[cos(135°+β)cos(45°-α)-sin(135°+β)sin(45°-α)]
=-[(−
)12 13
−3 5
(−5 13
)]=4 5
16 65