已知0°<β<45°<α<135°,cos(45°−α)=3/5,sin(135°+β)=5/13,求: (1)sin(α+β)的值. (2)cos(α-β)的值.

问题描述:

已知0°<β<45°<α<135°,cos(45°−α)=

3
5
sin(135°+β)=
5
13
,求:
(1)sin(α+β)的值.   
(2)cos(α-β)的值.

解∵0°<β<45°<α<135°,
∴-90°<45°-α<0°,135°<135+β<180°
cos(45°−α)=

3
5
,∴sin(45°−α)=−
4
5

sin(135°+β)=
5
13
,∴cos(135°+β)=−
12
13

∴sin(α+β)=-cos[(135°+β)-(45°-α)]
=-[cos(135°+β)cos(45°-α)+sin(135°+β)sin(45°-α)]
=−[(−
12
13
)
3
5
+
5
13
(−
4
5
)]=
56
65

cos(α-β)=-cos[(135°+β)+(45°-α)]
=[cos(135°+β)cos(45°-α)-sin(135°+β)sin(45°-α)]
=-[(−
12
13
)
3
5
5
13
(−
4
5
)]
=
16
65