已知一圆的圆心P在直线y=x上,且该圆与直线x+2y-1=0相切,截y轴所得弦长为2,求此圆方程.

问题描述:

已知一圆的圆心P在直线y=x上,且该圆与直线x+2y-1=0相切,截y轴所得弦长为2,求此圆方程.

设圆心的坐标为P(a,a),则半径r=|a+2a−1|5=|3a−1|5.再根据截y轴所得弦长为2,可得r2=12+a2,即9a2−6a+15=1+a2,解得:a=2,或a=-12,当a=2时,圆心P(2,2),半径为5,圆的方程为(x-2)2+(y-2)2=5;当a=-...