证明:对任意a>1,b>1,有不等式a^2/(b-1)+b^2/(a-1)大于等于8
问题描述:
证明:对任意a>1,b>1,有不等式a^2/(b-1)+b^2/(a-1)大于等于8
答
设元:设x=a-1y=b-1则原不等式等价于:x,y>0求证:(x+1)^2/y+(y+1)^2/x>=8而::(x+1)^2/y+(y+1)^2/x>=2√[【(x+1)^2(y+1)^2】/xy]由于(x+1)^2>=4x(y+1)^2>=4y故::(x+1)^2/y+(y+1)^2/x>=2√[【(x+1)^2(y+1)^2】/...