求极限limx→∞{1+1/2!+2/3!+...+n/(n+1)!}

问题描述:

求极限limx→∞{1+1/2!+2/3!+...+n/(n+1)!}

首先由于 e^x= sigma (n:0->+无穷) x^n/n!sigma表示求和令x=1有,e=sigma (n:0->+无穷) 1/n!=1+1/1!+1/2!+1/3!+.而 n/(n+1)!=[(n+1)-1]/(n+1)!=1/n!- 1/(n+1)!lim n→∞{1+1/2!+2/3!+...+n/(n+1)!}=1+sigma (...