若数列{an}的通项公式为an=1n2+3n+2,其前n项和为718,则n为(  ) A.5 B.6 C.7 D.8

问题描述:

若数列{an}的通项公式为an=

1
n2+3n+2
,其前n项和为
7
18
,则n为(  )
A. 5
B. 6
C. 7
D. 8

∵an=

1
n2+3n+2
=
1
(n+1)(n+2)
=
1
n+1
-
1
n+2

∴Sn=
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n
-
1
n+1
=
1
2
-
1
n+1

∵其前n项和为
7
18

1
2
-
1
n+1
=
7
18

解得n=8.
故选:D.