微分中值定理的题目

问题描述:

微分中值定理的题目
函数f(x)在(0,1)上连续且可导,且f(0)=0,f(1)=1/2
证:存在两点ξ1、ξ2属于(0,1),使得f'(ξ1)+f'(ξ2)=ξ1+ξ2

证:存在两点ξ1、ξ2属于(0,1),使得f'(ξ1)+f'(ξ2)=ξ1+ξ2设F(x)=f(x)-x^2/2F(x)在[0,1/2]上使用拉格朗日中值定理,存在ξ1∈(0,1/2),使得F'(ξ1)=[F(1/2)-f(0)] / (1/2-0)F(x)在[1/2,1]上使用拉格朗日中值定...