求极限三角函数
求极限三角函数
有理化分为分子有理化和分母有理化两种
在什么情况下使用哪一个?
如:lim x趋向于a(sinx-sina)/(x-a) 怎么解?
lim x趋向于无穷 [(x+1)/x]^(2x+1)=(1+1/x)^(2x+1)
2x+1应该怎么分呢?
关于三角函数还有一个问题
如:lim x趋向于0 (1-cosx)/ x^2/2
怎么去知道要把1-cosx变形为2sin^2(x/2)
去怎么去考虑的,请举一些例子说明,谢谢了!
1、有理化分为分子有理化和分母有理化两种
在什么情况下使用哪一个?
答:看情况,有时要分子分母同时进行.
以能够能够分子分母消去无穷大或无穷小为准.
2、如:lim x趋向于a (sinx-sina)/(x-a) 怎么解?
答:分子用sinx-sina=2cos[(x+a)/2]sin(x-a)/2代入得到:cos[(x+a)/2]{[sin(x-a)/2]/(x-a)/2,然后利用特殊极限sinx/x=1得到
cos[(x+a)/2],代入x=a即可得到cosa
3、lim x趋向于无穷 [(x+1)/x]^(2x+1)=(1+1/x)^(2x+1) 2x+1应该怎么分呢?
答:分成两部分:
[(x+1)/x]^(2x+1)
=(1+1/x)^(2x+1)
={[(1+1/x)]^(2x)}(1+1/x)
={[(1+1/x)]^(2x)}(1+0)
=[(1+1/x)]^(2x)
={[(1+1/x)]^x}^²
=e²
4、lim x趋向于0 (1-cosx)/ x^2/2
怎么去知道要把1-cosx变形为2sin^2(x/2)
去怎么去考虑的,
答:一般碰到以下情况,需要考虑变化:
a、1-cos2x=2sin²x
b、1+cos2x=2cos²x
c、1-cosx=2sin²(½x)
d、1+cosx=2cos²(½x)
e、1-cos½x=2sin²(¼x)
f、1+cos½x=2cos²(¼x)
g、1-cos¼x=2sin²(⅛x)
h、1+cos2x=2cos²(4x)
i、1-cos2x=2cos²(4x)
j、1+cos4x=2cos²(8x)
k、1-cos4x=2cos²(8x)