证明x>0时Sinx>x-(x3\3!)

问题描述:

证明x>0时Sinx>x-(x3\3!)

将f(x)=Sinx展成x的幂级数得,
sinx=x-(x^3)/(3!)+(x^5)/(5!)-(x^7)/(7!)+...x属于(负无穷,正无穷),
由此可得,
x>0时Sinx>x-(x3\3!)