dx^2/(dt)^2=a 求t 常微分方程的内容 怎么求

问题描述:

dx^2/(dt)^2=a 求t 常微分方程的内容 怎么求

答:
dx^2 /(dt)^2=a
x''(t)=a
积分:x'(t)=at+C
积分:x(t)=0.5at^2+Ct+K
所以:x=0.5at²+Ct+K,其中C和K是任意常数