用反证法证明:不存在整数m,n,使得m2=n2+1998.
问题描述:
用反证法证明:不存在整数m,n,使得m2=n2+1998.
答
假设存在整数m、n使得m2=n2+1998,则m2-n2=1998,即(m+n)(m-n)=1998.当m与n同奇同偶时,m+n,m-n 都是偶数,∴(m+n)(m-n)能被4整除,但4不能整除1998,此时(m+n)(m-n)≠1998;当m,n为一奇一偶时...