是否存在正整数m,使得f(n)=(2n+7)•3n+9对任意正整数n都能被m整除?若存在,求出最大的m值,并证明你的结论;若不存在,请说明理由.
问题描述:
是否存在正整数m,使得f(n)=(2n+7)•3n+9对任意正整数n都能被m整除?若存在,求出最大的m值,并证明你的结论;若不存在,请说明理由.
答
由f(n)=(2n+7)•3n+9,得f(1)=36,f(2)=3×36,f(3)=10×36,f(4)=34×36,由此猜想m=36.下面用数学归纳法证明:(1)当n=1时,显然成立.(2)假设n=k时,f(k)能被36整除,即f(k)=(2k+7)•3k+9...