在三角形ABC中,角A,B,C所对应的边分别是a,b,c,而且满足bsinA=根号3acosB(1)求角B的值(2)若cosA/2=2 又根号5/5,求sinC 的值

问题描述:

在三角形ABC中,角A,B,C所对应的边分别是a,b,c,而且满足bsinA=根号3acosB(1)求角B的值(2)若cosA/2=2 又根号5/5,求sinC 的值

化成bsinA=根号3sina(cosB),因为在三角形ABC中,A不等于0,则b=根号3(cosB),得到B=60度cosA/2=2 又根号5/5,得到cosA=0.6,sinc=sin(a+b),所以(4+3倍根号3)/10=sinC