设f(x)是定义在(0,+∞)上的增函数,对一切m,n∈(0,+∞),都有f(m/n)=f(m)-f(n),且f(4)=1,解关于x的不等式
问题描述:
设f(x)是定义在(0,+∞)上的增函数,对一切m,n∈(0,+∞),都有f(m/n)=f(m)-f(n),且f(4)=1,解关于x的不等式
f(x)-f(1/x)<2
答
这样解很简单:f(x)-f(1/x)=f(x)-f(1)+f(x)=2f(x)-f(1),又因f(m/n)=f(m)-f(n),显然当m=n=1时,f(m/n)=f(1)=0 所以2f(x)