有一座抛物线拱桥,当桥拱顶点距水面6米高时,桥下水面宽AB=20m

问题描述:

有一座抛物线拱桥,当桥拱顶点距水面6米高时,桥下水面宽AB=20m
有一座抛物线形拱桥,当桥拱顶点距水面6米高时,桥下水面宽AB=20m,随着水位的上升,桥下水面的宽逐步减小,当水面升到水面宽为10米就到了警戒线CD.
解析式是Y=-3/50X方
当洪水来临时,水位以每时0.2米的速度上升,多少时间水位到达警戒线?

把 x = 5 (10÷2) 带入,得
y = 1.5
t = (6-1.5)÷0.2 = 22.5