已知三角形ABC的内角A,B,C的对边分别为a,b,c,且根号下3bsinA/2cosA/2
问题描述:
已知三角形ABC的内角A,B,C的对边分别为a,b,c,且根号下3bsinA/2cosA/2
已知三角形ABC的内角A,B,C的对边分别为a,b,c,若(根号3)/3*b*sinA/2*cosA/2+a*(cosB/2)的平方=a.(1)求B的大小 (2)y=sinC-sinA 求y的取值范围
sinA/2,cosA/2,cosB/2是sin(A/2),cos(A/2)和cos(B/2)
答
(1)a=√3/3*b*sin(A/2)*cos(A/2)+a*(cos(B/2))^2
=√3/6*b*sinA+1/2*a*cosB+1/2*a
即:a=√3/3*b*sinA+a*cosB
同除以sinA,得a/sinA=√3/3*b+a/sinA*cosB
正弦定理:(a/sinA=b/sinB)得:b/sinB=√3/3*b+b*cosB/sinB
化简得:√3/3=(1-cosB)/sinB,
两边平方可计算得cosB=1/2,所以B=60°
(2)y=sinC-sinA=2*sin(C/2-A/2)*cos(C/2+A/2)=2*sin((C-A)/2)*cos60°=sin((C-A)/2)
∵A+C=120°∴-120°