已知ab-2的绝对值加a-2的绝对值=0,求1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+.+1/(a+2006)(b+2006)=?
问题描述:
已知ab-2的绝对值加a-2的绝对值=0,求1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+.+1/(a+2006)(b+2006)=?
答
ab-2的绝对值大于或等于0
a-2的绝对值也是大于或等于0
ab-2的绝对值加a-2的绝对值=0
所以ab-2=0,a-2=0.解得a=2,b=1
由a=2,b=1知
1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+.+1/(a+2006)(b+2006)=1/(2*1)+1/(3*2)+1/(4*3)+.+1/(2008*2007),一共2007项
其通项ak=1/[(k+1)*k]=1/k-1/(k+1)
故1/(2*1)+1/(3*2)+1/(4*3)+.+1/(2008*2007)=1-1/2+1/2-1/3+1/3-1/4+.1/2007-1/2008=1-1/2008=2007/2008
即1/ab+1/(a+1)(b+1)+1/(a+2)(b+2)+.+1/(a+2006)(b+2006)=2007/2008