1/2*4+1/4*6+1/6*8+.+1/1000*1002
问题描述:
1/2*4+1/4*6+1/6*8+.+1/1000*1002
1/(2*4)+1/(4*6)+1/(6*8)+......+1/(1000*1002)
1/(1*5)+1/(5*9)+1/(9*13)+......+1/(397*401)
答
1/2*4+1/4*6+1/6*8+.+1/1000*1002
=1/2[1/2-1/4+1/4-1/6+.+1/1000-1/1002]
=1/2(1/2-1/1002)
=1/2*250/501
=125/501