大学第二型曲面积分问题
问题描述:
大学第二型曲面积分问题
计算空间第二类型曲面积分∫(封闭L)(y^2-z^2)dx+(z^2-x^2)dy+(x^2-y^2)dz 其中L为八分之一球面x^2+y^2+z^2=1,x>=0,y>=0,z>=0的边界线ABCA,从球心看L,L为逆时针方向.
答
大学第二型曲面积分问题
计算空间第二类型曲面积分∫(封闭L)(y^2-z^2)dx+(z^2-x^2)dy+(x^2-y^2)dz 其中L为八分之一球面x^2+y^2+z^2=1,x>=0,y>=0,z>=0的边界线ABCA,从球心看L,L为逆时针方向.