16.13题:下列矩阵中那些矩阵可对角化?并对可对角化的矩阵A,求一个可逆矩阵P,使P^-1A成对角矩阵:

问题描述:

16.13题:下列矩阵中那些矩阵可对角化?并对可对角化的矩阵A,求一个可逆矩阵P,使P^-1A成对角矩阵:
【2,1,-1;1,2,1;0,0,1】

解: |A-λE|=
2-λ1 -1
12-λ1
001-λ
=(1-λ)[(2-λ)^2-1]
=(1-λ)^2 (3-λ).
所以A的特征值为1,1,3
(A-E)X=0 的基础解系为: (1,-1,0)'.
故A不能相似于对角矩阵.