过坐标原点O作圆x2+y2-6x-8y+20=0的两条切线OA、OB,A、B为切点,则线段AB的长为_.

问题描述:

过坐标原点O作圆x2+y2-6x-8y+20=0的两条切线OA、OB,A、B为切点,则线段AB的长为______.

:圆x2+y2-6x-8y+20=0 可化为(x-3)2+(y-4)2 =5,
圆心(3,4)到原点的距离为5.故cosα=

5
5

∴cos∠AO1B=2cos2α-1=-
3
5

∴|AB|2=(
5
2+(
5
2+2×(
5
2×
3
5
=16.
∴|AB|=4.
故答案为:4.