微分中值定理问题
问题描述:
微分中值定理问题
已知f(x)于[a,b]上二阶可导,A(a,f(a)),B(b,f(b)).线段AB交y=f(x)曲线于另一点C.求证:存在μ∈(a,b),使得f(x)的二阶导数f''(x)=0、没悬赏了,
答
设点C的坐标为(c,f(c)),易知a
存在ξ2∈(c,b),使得f'(ξ2)=[f(b)-f(c)]/(b-c)
ξ1因点C∈线段AB,故[f(c)-f(a)]/(c-a)=[f(b)-f(c)]/(b-c)=线段AB的斜率
所以f'(ξ1)=f'(ξ2)
由罗尔定理,存在μ∈(ξ1,ξ2),使得f''(μ)=[f'(ξ2)-f'(ξ1)]/(ξ2-ξ1)=0
即存在μ∈(a,b),使得f''(x)=0