三棱柱ABC-A1B1C1中,侧棱与底面垂直,角ABC等于90度,AB等于BC等于BB1等于2,M,N分别是A1C,AB的中点 ...

问题描述:

三棱柱ABC-A1B1C1中,侧棱与底面垂直,角ABC等于90度,AB等于BC等于BB1等于2,M,N分别是A1C,AB的中点 ...
三棱柱ABC-A1B1C1中,侧棱与底面垂直,角ABC等于90度,AB等于BC等于BB1等于2,M,N分别是A1C,AB的中点 1.求证MN平行平面BCC1B1 2.求证:MN垂直平面A1B1C 3.求二面角M-B1C-A1的余弦值

(Ⅰ)证明:连接BC1,AC1,∵M,N是AB,A1C的中点∴MN∥BC1.
又∵MN不属于平面BCC1B1,∴MN∥平面BCC1B1.
∵三棱柱ABC-A1B1C1中,侧棱与底面垂直,
∴四边形BCC1B1是正方形.
∴BC1⊥B1C.∴MN⊥B1C.
连接A1M,CM,△AMA1≌△BMC.
∴A1M=CM,又N是A1C的中点,∴MN⊥A1C.
∵B1C与A1C相交于点C,
∴MN⊥平面A1B1C.