如下图,点P为∠ABC角平分线上的一点,D点和E点分别在AB和BC上,且PD=PE,试探究∠BDP与∠BEP的数量关系,并给予证明.

问题描述:

如下图,点P为∠ABC角平分线上的一点,D点和E点分别在AB和BC上,且PD=PE,试探究∠BDP与∠BEP的数量关系,并给予证明.

∠BDP+∠BEP=180°.
理由:过P作PM⊥AB于点M,PN⊥BC于N点,
由角平分线性质,得PM=PN
在Rt△DPM和Rt△EPN中

PD=PE
PM=PN

∴Rt△DPM≌Rt△EPN(HL)
∠ADP=∠BEP,
又∠BDP+∠ADP=180°,
∴∠BDP+∠BEP=180°.