关于X的二元一次方程(K^2-6K+8)X^2+(2K^2-6k-4)X+K^2=4的两个根都是整数,试求满足条件的所有实数 K 值

问题描述:

关于X的二元一次方程(K^2-6K+8)X^2+(2K^2-6k-4)X+K^2=4的两个根都是整数,试求满足条件的所有实数 K 值
正确还有奖金!

用求根公式,
x=[(4+6k-2k^2)±√(4k^2-48k+144)]/(2k^2-12k+16)
化简得
x1=(-4k^2+4k-4)/(k^2-6k+8)=(2-k)/(k-4)
x2=(-k^2+2k+8)/(k^2-6k+8)=(k+2)/(2-k)
若要(2-k)/(k-4) 和(k+2)/(2-k)都为整数
只有k=3和k=6符合条件