点M(1,3),直线l:x=1-2t/√5,y=3+t/√5.(t为参数)与圆x=1+cosΘ,y=5+sinΘ相交与P1,P2两点.求P1P2中点坐标.
问题描述:
点M(1,3),直线l:x=1-2t/√5,y=3+t/√5.(t为参数)与圆x=1+cosΘ,y=5+sinΘ相交与P1,P2两点.求P1P2中点坐标.
答
P1P2两点坐标为(x1、y1)、(x2、y2)直线方程为:x+2y-7=0圆的方程为:(x-1)^2+(y-5)^2=1,所以(7-2y-1)^2+(y-5)^2=15y^2-34y+60=0y1+y2=34/5x1+x2=7-2(y1+y2)=-33/5所以P1P2中点坐标为:(-33/10,17/5)...