某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表: A型利润 B型利润 甲店 200

问题描述:

某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:

A型利润 B型利润
甲店 200 170
乙店 160 150
(1)设分配给甲店A型产品W=200x+170(70-x)+160(40-x)+150(x-10)件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并求出x的取值范围;
(2)若公司要求总利润不低于17560元,有多少种不同分配方案,哪种方案总利润最大,并求出最大值.

(1)∵w=200x+170(70-x)+160(40-x)+150(x-10)=20x+16800,又∵x≥070−x≥040−x≥0x−10≥0,∴10≤x≤40,∴w=20x+16800(10≤x≤40)(2)∵20x+16800≥17560,x≥38,∴38≤x≤40,∴有3种不同方案.∵k=...