如果4个不同的正整数m、n、p、q满足(7-m)(7-n)(7-p)(7-q)=4,那么,m+n+p+q等于(  ) A.10 B.2l C.24 D.28

问题描述:

如果4个不同的正整数m、n、p、q满足(7-m)(7-n)(7-p)(7-q)=4,那么,m+n+p+q等于(  )
A. 10
B. 2l
C. 24
D. 28

∵m、n、p、q为4个不同的正整数,
∴7-m、7-n、7-p、7-q为4个不同的整数,
又∵4=2×2×1×1,
∴4=-1×(-2)×1×2,
∴7-m、7-n、7-p、7-q为-2、-1、1、2,
∴(7-m)+(7-n)+(7-p)+(7-q)=-2+(-1)+1+2=0,
∴m+n+p+q=28.
故选D.