求[1--tan^2(75)]/tan75

问题描述:

求[1--tan^2(75)]/tan75
tan^2(75)为tan75度的平方
1/(2tan75)/2[1-tan^2(75)]
应该是这个吧1/{(2tan75)/2[1-tan^2(75)]}

因[1-tan^2(75)]/tan75
=2[1-tan^2(75)]/2tan75
=1/{(2tan75)/2[1-tan^2(75)]}
=2/{(2tan75)/[1-tan^2(75)]}
=2/tan150
=2/[-(tan30)]
=-2√3