已知复矩阵A的特征多项式为(λ-2)^3(λ-3)^2(λ+1),且A在复数域上可对角化,A的极小多项式为()
问题描述:
已知复矩阵A的特征多项式为(λ-2)^3(λ-3)^2(λ+1),且A在复数域上可对角化,A的极小多项式为()
答
A可对角化,说明:A的最小多项式能化为不同一次因式的乘积.
又由于最小多项式与特征多项式有相同的根,所以:
由特征多项式为(λ-2)^3(λ-3)^2(λ+1)得:最小多项式为(λ-2)(λ-3)(λ+1).