已知X=根号2+1分之根号2-1,Y=根号2-1分之根号2+1,求代数式X^2-XY+ Y^2的值.
问题描述:
已知X=根号2+1分之根号2-1,Y=根号2-1分之根号2+1,求代数式X^2-XY+ Y^2的值.
答
将X,Y分母有理化:
Y=(√2+1)/(√2-1),分子分母同乘以√2+1,则Y=3+2√2
X=(√2-1)/(√2+1),分子分母同乘以√2-1,则X=3-2√2
从而 XY=1 X-Y=-4√2
故X^2-XY+Y^2=(X-Y)^2+XY=(4√2)^2+1=33
答
找个计算器按吧,又没有特殊数据
答
X=根号2+1分之根号2-1,Y=根号2-1分之根号2+1
X^2=(根号2-1)^2=3-2根号2
XY=1
Y^2=(根号2+1)^2=3+2根号2
X^2-XY+ Y^2=3-2根号2-1+3+2根号2=5
答
x=3-2*根号2 y=3+2*根号2, xy=1,原式=(x+y)^2-3xy=6^2-3=33