求不定积分x^2dx/根号1-x^2.

问题描述:

求不定积分x^2dx/根号1-x^2.

令x=sint,则t=arcsinx,dt/dx=1/√(1-x²)
原式=∫sin²t/√(1-x²) *√(1-x²) dt
=∫sin²tdt
=1/2*∫(1-cos2t)dt
=t/2-1/4sin2t+C
=t/2-1/2*sintcost+C
=t/2-1/2*sint*√(1-sin²t)+C
=1/2*arcsinx-x/2*√(1-x²)+C