已知f是集合M={a,b,c,d}到集合N={0,1,2}的映射,f(a)+f(b)+f(c)+f(d)=4,则不同的映射有_.
问题描述:
已知f是集合M={a,b,c,d}到集合N={0,1,2}的映射,f(a)+f(b)+f(c)+f(d)=4,则不同的映射有______.
答
根据a、b、c、d对应的像为2的个数来分类,可分为三类:
第1类:没有元素的像为2,其和又为4,故其像都为1,这样的映射只有1个;
第2类:一个元素的像是2,其余三个元素的像必为0、1、1,这样的映射有C41C31=12(个);
第3类:两个元素的像是2,另两个元素的像必为0,这样的映射有C42=6(个).
由分类计数原理,共有1+12+6=19(个).
故答案为:19.