sinx*sin(x+y)+cosx*cos(x+y)等于?

问题描述:

sinx*sin(x+y)+cosx*cos(x+y)等于?

cosy

cosy
是公式
cosa*cosb+sina*sinb=cos(a-b)
∵cos(A-B)=cosA*cosB+sinA*sinB
∴逆用以上公式得
sinx*sin(x+y)+cosx*cos(x+y)
=cos[(x+y)-x]
=cosy
∴sinx*sin(x+y)+cosx*cos(x+y)=cosy

由公式cos(A-B)=cosA*cosB+sinA*sinB

sinx*sin(x+y)+cosx*cos(x+y)
=cosx*cos(x+y)+sinx*sin(x+y)【注意变化】
=cos[(x+y)-x]
=cosy
∴sinx*sin(x+y)+cosx*cos(x+y)=cosy

cosy
是公式
cosa*cosb+sina*sinb=cos(a-b)

∵cos(A-B)=cosA*cosB+sinA*sinB
∴逆用以上公式得
sinx*sin(x+y)+cosx*cos(x+y)
=cos[(x+y)-x]
=cosy
∴sinx*sin(x+y)+cosx*cos(x+y)=cosy

sinx*sin(x+y)+cosx*cos(x+y)=cos(x+y-x)=cosy
因为sina*sinb+cosa*cosb=cos(b-a)