若cosA=4/5,cos(A+B)=3/5 A,B为锐角,求sinB

问题描述:

若cosA=4/5,cos(A+B)=3/5 A,B为锐角,求sinB

∵A,B为锐角∴0sinA=√(1-(cosA)^2)=3/5
sinB=sin((A+B)-A) =sin(A+B)cosA-cos(A+B)sinA =(4/5)×(4/5)-(3/5)×(3/5) =7/25

cos(A+B)=3/5,A,B为锐角
cosA=4/5,sinA=3/5
cosAcosB-sinAsinB=3/5
4√(1-sin^2B)-3sinB=3
16(1-sin^2B)=9(1+sinB)^2,B为锐角
sinB=7/25

cosA=4/5
sinA=3/5=cos(A+B)
因A,B为锐角
A=90-(A+B)
B=90-2A
所以 sinB=cos2A=2(cosA)^2-1=7/25

SinB=sin(A+B-A)
=sin(A+B)cosA-cos(A+B)sinA
cosA=4/5,cos(A+B)=3/5 A,B为锐角
则sinA=[1-(cosA)^2]^(1/2)=3/5
A,B都是锐角,A+B sin(A+B)==[1-(cosA+B)^2]^(1/2)=4/5
SinB=sin(A+B-A)
=sin(A+B)cosA-cos(A+B)sinA
=4/5*4/5-3/5*3/5
=7/25