过(1,2)点与圆x²+y²=4交于A,B,且绝对值AB=2的直线方程
问题描述:
过(1,2)点与圆x²+y²=4交于A,B,且绝对值AB=2的直线方程
答
x²+y²=4
圆心为(0,0) 半径为2
AB为直线和圆的相交弦
所以弦心距=根号下3
过点(1,2)的直线设为y=a(x-1)+2
圆心到直线的距离=弦心距
即|2-a|/根号下(a²+1)=根号下3
(2-a)²=3(a²+1)
2a²+4a-1=0
解得 a=(-4±2根号下6)/4=(-2±根号下6)/2
所以直线方程为 y=(-2+根号下6)(x-1)/2+2 或y=(-2-根号下6)(x-1)/2+2