解方程:x^4-8x^3+24x^2-32x-65=0

问题描述:

解方程:x^4-8x^3+24x^2-32x-65=0

令ƒ(x) = x⁴ - 8x³ + 24x² - 32x - 65
65的因子有± 1,± 5,± 13
将这6个分别代入ƒ(x)中
发现ƒ(- 1) = ƒ(5) = 0
由因式定理,ƒ(x)必可被(x - 5)(x + 1)整除
用多项式除法解ƒ(x)/[(x - 5)(x + 1)]得到x² - 4x + 13
于是ƒ(x)可被因式分解为(x - 5)(x + 1)(x² - 4x + 13)
于是(x - 5)(x + 1)(x² - 4x + 13) = 0
x = - 1 或 x = 5,其余两个是虚数根