若(sinα+cosα)/(sinα-cosα)=2,求sin(α-5π)sin(3π/2-α)的值
问题描述:
若(sinα+cosα)/(sinα-cosα)=2,求sin(α-5π)sin(3π/2-α)的值
答
用合分比定理,得
(sinα+cosα)/(sinα-cosα)=2
→sinα/cosα=3
→tanα=3.
∴sin(α-5π)sin(3π/2-α)
=(-sinα)·(-cosα)
=sinαcosα/(sin²α+cos²α)
=tanα/(1+tan²α)
=3/(1+3²)
=3/10.
答
∵(sinα+cosα)/(sinα-cosα)=2==>sinα+cosα=2(sinα-cosα)==>sinα=3cosα==>(3cosα)^2+(cosα)^2=1==>10(cosα)^2=1∴(cosα)^2=1/10故sin(α-5π)sin(3π/2-α)=-sinα(-cosα)=sinαcosα=(3cosα)cosα=3...