如图,在△ABC中,AC=BC,∠C=90°,AD平分∠CAB,过B作BE⊥AD,交AD的延长线于E,又已知AD=6cm,求BE的长.
问题描述:
如图,在△ABC中,AC=BC,∠C=90°,AD平分∠CAB,过B作BE⊥AD,交AD的延长线于E,又已知AD=6cm,求BE的长.
答
延长BE、AC交于F点,如图,
∵BE⊥EA,
∴∠AEF=∠AEB=90°.
∵AD平分∠BAC,
∴∠FAE=∠BAE,
∴∠F=∠ABE,
∴AF=AB,
∵BE⊥EA,
∴BE=EF=
BF,1 2
∵△ABC中,AC=BC,∠C=90°,
∴∠CAB=45°,
∴∠AFE=(180-45)°÷2=67.5°,∠FAE=22.5°,
∴∠CDA=67.5°,
∵在△ADC和△BFC中,
,
∠F=∠ADC ∠ACD=∠BCF AC=CB
∴△ADC≌△BFC(AAS),
∴BF=AD,
∴BE=
AD=3cm.1 2