cos(x)*(sin(x))^2*d(sin(x)),在0到90的定积分如何计算,

问题描述:

cos(x)*(sin(x))^2*d(sin(x)),在0到90的定积分如何计算,

分步积分法

(sin(x))^2=1-cos(x)^2
d(sin(x))=-d(cos(x))
代入 根据x的范围确定cosx的范围 就可以算了

cos(x)*(sin(x))^2*d(sin(x))
=cos(x)^2*(sin(x))^2*d(x)
=1/4*(sin(2x))^2*d(x)
=1/8*(sin(2x))^2*d(2x)
化简到这,自己可以算了吧