cos(x)*(sin(x))^2*d(sin(x)),在0到90的定积分如何计算,
问题描述:
cos(x)*(sin(x))^2*d(sin(x)),在0到90的定积分如何计算,
答
分步积分法
答
(sin(x))^2=1-cos(x)^2
d(sin(x))=-d(cos(x))
代入 根据x的范围确定cosx的范围 就可以算了
答
cos(x)*(sin(x))^2*d(sin(x))
=cos(x)^2*(sin(x))^2*d(x)
=1/4*(sin(2x))^2*d(x)
=1/8*(sin(2x))^2*d(2x)
化简到这,自己可以算了吧