求∫sin√xdx的不定积分

问题描述:

求∫sin√xdx的不定积分

楼上正解

令√x=t
那么x=t² dx=2tdt
∫sin√xdx=∫2tsintdt
=-2∫tdcost
=-2[tcost-∫costdt]
=-2[tcost-sint+C]
=-2tcost+2sint+C
=-2√xcos√x+2sin√x+C

令√x=t
∫sin√xdx
=2∫tsintdt
=-2∫tdcost
=-2tcost+2∫costdt
=-2tcost+2sint+C
=-2√xcos√x+2sin√x+C