计算不定积分1.∫(sinXcosx)/(1+sin^4 X)dx 2.∫dx/(X^2 (4-X^2)^1/2)
问题描述:
计算不定积分1.∫(sinXcosx)/(1+sin^4 X)dx 2.∫dx/(X^2 (4-X^2)^1/2)
答
=§sinx/(1+sin^4x)dsinx设sinx=t原式=1/根号8§1/(t^2-根号2t+1)-1/(t^2+根号2t+1)dt然后就是代公式了!令x=2sint则原式=1/4§1/sin^2tdt=-1/4cott+c,要回代!