87×17/88和1×2/1+2x3/1+3×4/1……+99×100/1,简算!

问题描述:

87×17/88和1×2/1+2x3/1+3×4/1……+99×100/1,简算!

87×17/88
=(88-1)×17/88
=88×17/88-1×17/88
=17-17/88
=16又71/88

1×2/1+2x3/1+3×4/1……+99×100/1
=1*2+2*3+3*4+4*5+5*6+6*7+7*8+……+98*99+99*100
=1*2+(2*3+3*4)+(4*5+5*6)+(6*7+7*8)+……+(98*99+99*100)
=2*1²+2*3²+2*5²+2*7²+2*9²+……+2*99²
=2*(1^2+3^2+5^2……+99^2)

而1²+3²+5²+..........(2n-1)²=n(4n^2-1)/3
这里 n=50
1-100所有奇数的平方和=50*(4*50^2-1)/3=166650

所以1*2+2*3+3*4+4*5+5*6+6*7+7*8+……+98*99+99*100 =166650*2=333300赞同0|评论


第二题分子和分母倒了吧
1/(1*2)+1/(2*3)+1/(3*4)+..........1/(99+100)
=1-1/2+1/2-1/3+1/3-1/4+.........+1/99-1/100
=1-1/100
=99/100=0.99

87*17/88=(88-1)*17/88=17-17/88=16又71/88
第二题分子和分母倒了吧
1/(1*2)+1/(2*3)+1/(3*4)+..........1/(99+100)
=1-1/2+1/2-1/3+1/3-1/4+.........+1/99-1/100
=1-1/100
=99/100
=0.99

87×17/88 =(88-1)×17/88 =88×17/88-1×17/88 =17-17/88 =16又71/881×2/1+2x3/1+3×4/1……+99×100/1=1*2+2*3+3*4+4*5+5*6+6*7+7*8+……+98*99+99*100 =1*2+(2*3+3*4)+(4*5+5*6)+(6*7+7*8)+……+(98...