设f(x)=4x4x+2,求f(1/1001)+f(2/1001)+f(3/1001)+…+f(1000/1001)的值.
问题描述:
设f(x)=
,求f(4x
4x+2
)+f(1 1001
)+f(2 1001
)+…+f(3 1001
)的值. 1000 1001
答
f(1-x)=
=41−x
41−x+2
=4 4+2•4x
,2 2+4x
∴f(x)+f(1-x)=
+4x
4x+2
=1,2 2+4x
∴f(
)+f(1 1001
)=f(1000 1001
)+f(2 1001
)=…=f(999 1001
)=f(500 1001
)=1,501 1001
∴f(
)+f(1 1001
)+f(2 1001
)+…+f(3 1001
)=500.1000 1001