如图,△ABC中AB=AC,AD⊥BC,垂足为点D,∠BAC=48°,CE、CF三等分∠ACB,分别交AD于点E、F,连接BE并延长交AC于点G,连接FG,则∠AGF=_.
问题描述:
如图,△ABC中AB=AC,AD⊥BC,垂足为点D,∠BAC=48°,CE、CF三等分∠ACB,分别交AD于点E、F,连接BE并延长交AC于点G,连接FG,则∠AGF=______.
答
∵∠A=48°,AC=AB,
∴∠ABC=∠ACB=
(180°-∠BAC)=66°,1 2
设BG与CF交点为O,连接BF,
∵AB=AC,AD⊥BC,
∴BD=DC,
∴FB=FC,
∴∠FBC=∠FCB,
同理∠EBC=∠ECB,
∴∠FBE=∠FCE,
∵CE,CF三等分∠GCD,
∴∠FBE=∠FCE=∠FCG,
∵∠FOB=∠GOC,
∴△FOB∽△GOC,
∴
=FO BO
,GO CO
∵∠FOG=∠BOC
∴△FOG∽△BOC
∴∠FGO=∠BCO=
∠ACB=2 3
×66°=44°2 3
∴∠AGF=∠BGA-∠FGO,
=∠GBC+∠GCB-∠FGO,
=22°+66°-44°=44°.
故答案为:44°.