设函数f(x)=ax+b/x(a,b∈R),若f(x)在点(1,f(1))处的切线的斜率为1,

问题描述:

设函数f(x)=ax+b/x(a,b∈R),若f(x)在点(1,f(1))处的切线的斜率为1,
1.用a表示b.
2.设g(x)=lnx-f(x),若g(x)≤-1对定义域内的x恒成立.
(1)求实数a的取值范围.
(2)对任意的θ∈【0,π/2),证明:g(1-sinθ)≤g(1+sinθ).

f'(x)=a-b/x^2由f'(1)=a-b=1 ==>b=a-12 g(x)=lnx- ax-(a-1)/x(x>0)若g(x)≤-1对定义域内的x恒成立需g(x)max≤-1g'(x)=1/x-a+(a-1)/x^2=[-ax^2+x+(a-1)]/x^2= (x-1)[-ax-(a-1)]/x^2a=0时,g'(x)=(x-1)/x^2,...