已知cos(α-6/π)=12/13,π/6

问题描述:

已知cos(α-6/π)=12/13,π/6

∵π/6<α<π/2
∴0<α-π/6<π/3
∴sin(α-π/6)=5/13
∴sinα=sin[(α-π/6)+π/6]
=sin(α-π/6)cosπ/6+cos(α-π/6)sinπ/6
=5/13*(√3/2)+12/13*(1/2)
=(5√3+12)/26
【过程已写出,】